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Science has led to a new understanding of life itself:
«Life is a partnership between genes and
mathematics» (Stewart . Life's other secret: The new
mathematics of the living world. 1999, New-York: Penguin).

But what kind of mathematics is a partner with the
genetic code and defines the structure of living
matter? This lecture shows that phenomenology of
ensembles of molecular-genetic elements is
connected with ensembles of projection operators,
which are well-known in physics, informatics,
chemistry, etc.



Information from the micro-world of genetic
molecules dictates constructions in the macro-world of
living organisms under strong noise and interference.
This dictation is realized by means of unknown
algorithms of multi-channel noise-immunity coding.
For example, in accordance with Mendel's laws of
Independent inheritance of traits, colors of human
skin, eye and hairs are genetically defined
Independently. So, each living organism Is an
algorithmic machine of multi-channel noise-
Immunity coding. To understand this machine we
should use the theory of noise-immunity coding,
which Is based on matrix representations of digital
Information. Correspondingly we search mathematics
of genetic systems In matrix representations of
ensembles of genetic elements.




Our visual perception and a “projection method” in
the drawing are based on projections of external
objects on retina and a drawing plane. In
mathematics, such operations of projections are
expressed by means of square matrices, which are
called “projection operators” (or “projectors”).



The following matrix P is an example of a
projector, which makes a projection of vector [,
vy, z] on the plane [x, vy, O]:
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A necessary and sufficient condition that a
matrix P is a projection operator is given by the
criterion: P2 = P. Many matrices in this lecture
will satisfy this criterion.




Projection operators are used widely in math,
physics (including quantum mechanics), chemistry,
informatics, logics, etc. Two kinds of projectors exist:

orthogonal S
projectors are expressed RECAN

by symmetric matrices; oblique <~ . O
projectors — by asymmetric S X /
matrices (they are less studied). N

This lecture shows that projectors can be also used
in studying and modeling properties of the genetic
code system and many inherited biological
ensembles including ensembles of cyclic processes,
phyllotaxis patterns, etc.



EXPLANATION ABOUT GENETIC MATRICES R; AND H,

Theory of noise-immunity coding is based on
matrix methods. For example, matrix methods allow
transferring high-quality photos of Mar’s surface via
millions of kilometers of strong interference. In
particularly, Kronecker families of Hadamard matrices
are used for this aim.
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Here (n) means a Kronecker power.



By analogy with theory of noise-immunity coding, the
4-letter alphabet of RNA (adenine A, cytosine C,
guanine G and uracil U) can be represented in a form
of a (2*2)-matrix [C U; A G] as a kernel of a
Kronecker family of matrices [C U; A G]™N), where (N)
means a Kronecker power. The third Kronecker power
of this alphabetic (2*2)-matrix gives the (8*8)-matrix
of 64 triplets disposed in a strong order. These 64
triplets encode amino acids of proteins.




Two first positions of each triplet is termed as a “root”
of the triplet. The phenomenological fact is that the
set of 64 triplets Is divided by the nature into two
equal subsets with 32 triplets in each. The first subset
contains 32 triplets with “strong roots” CC, CU, CG,
AC, UC, GC, GU, GG (it means that all triplets, which
have one of these roots, encode the same amino acid).
The second subset contains 32 triplets with “weak
roots” CA, AA, AU, AG, UA, UU, UG, GA (it means
that all triplets, which have one of these roots, encode
not the same amino acid).

Whether any symmetry exists in a disposition of
triplets with strong and weak roots in the matrix of
triplets [C U; A G]® constructed formally ?




THE STANDARD CODE

8 subfamilies of triplets with strong
roots («black triplets») and amino
acids, which are encoded by them

8 subfamilies of triplets with weak roots
(«white triplets») and amino acids, which
are encoded by them

CCC, CCT, CCA, CCG > Pro

CAC, CAT, CAA, CAG = His, His, Gln, GIn

CTC, CTT,CTA,CTG = Leu

AAC, AAT, AAA, AAG = Asn, Asn, Lys, Lys

CGC, CGT, CGA, CGG =>» Arg

ATC, ATT, ATA, ATG = lle, lle, lle, Met

ACC, ACT, ACA,ACG => Thr

AGC, AGT, AGA, AGG => Ser, Ser, Arg, Arg

TCC, TCT, TCA, TCG  =>» Ser

TAC, TAT, TAA, TAG = Tyr, Tyr, Stop, Stop

GCC, GCT, GCA, GCG =» Ala

TTC, TTT, TTA, TTG = Phe, Phe, Leu, Leu

GTC, GTT, GTA, GTG =» Val

TGC, TGT, TGA, TGG = Cys, Cys, Stop, Trp

GGC, GGT, GGA, GGG = Gly

GAC, GAT, GAA, GAG = Asp, Asp, Glu, Glu

THE VERTEBRATE MITOCHONDRIAL CODE

CCC, CCT, CCA,CCG =>» Pro

CAC, CAT, CAA, CAG = His, His, GIn, GIn

CTC, CTT,CTA,CTG = Leu

AAC, AAT, AAA, AAG => Asn, Asn, Lys, Lys

CGC, CGT, CGA, CGG => Arg

ATC, ATT, ATA, ATG =D lle, lle, Met, Met

ACC, ACT, ACA, ACG =>» Thr

AGC, AGT, AGA, AGG=> Ser, Ser, Stop, Stop

TCC, TCT, TCA, TCG = Ser

TAC, TAT, TAA, TAG => Tyr, Tyr, Stop, Stop

GCC, GCT, GCA, GCG => Ala

TTC, TTT, TTA, TTG  =»Phe, Phe, Leuy, Leu

GTC, GTT, GTA, GTG = Val

T__GC, TGT, EA,_‘IEG =>» Cys, Cys, Trp, Trp

GGC, GGT, GGA, GGG = Gly

GAC, GAT, GAA, GAG= Asp, Asp, Glu, Glu

Figure shows triplets with strong roots éblack color)
and weak roots (white color) in the Standard Genetic
Code and the Vertebrate Mitochondrial Genetic Code



It should be noted that a huge quantity 64! =~ 103 of
variants exists for dispositions of 64 triplets in the
(8*8)-matrix. For comparison, the modern physics
estimates time of existence of the Universe in 10/
seconds. It I1s obvious that an accidental disposition of
the 20 amino acids and the corresponding triplets in a
(8*8)-matrix will give almost never any symmetry.



But unexpectedly the phenomenological disposition
of the 32 triplets with strong roots (black color) and
the 32 triplets with weak roots (white color) has a
symmetric character: 1) both quadrants along each of
diagonals are identical by their mosaic; 2) the upper
half and the lower half of the matrix are mirror-anti-
symmetric to each other in its colors: any pair of cells,
disposed by mirror-symmetrical manner in these
halves, possesses the opposite colors.
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[CU; AG]® =

The most important fact
IS that a mosaic
character of each of
columns corresponds

to an odd meander-like function. But such odd
meander-like functions are well-known In theory of
signal processing under the name “Rademacher
functions”.




CCC | CCU | CUC | CUUQUCE UCU U v
CCA [ CCG [ CUA | CUGJUCA UCE UUA WG
CAC | CAU [CGC | CGUJUAC VAU UGC UGU
CAA | CAG | CGA | CEGRUAA UAG UGA UGG

ACC [ ACU | AUC | AWV BGCC GLU GUC  GUU
ACA | ACG | AUA |AUGIGCA LG VA QUG
AGC | AGUJGAC CGAU GGC GGU
AGA [AGGJGAA GAG GGA GGG

SRR

UAL UAG UGA UGG
GCC GCU GUC GUU

CGC | CEURUAC UAU UGC UGU

CAA | CAG | CGA | CGG
ACC | ACU | AUC [ AUV

CCC | CCU | CUC | CUU JUCE UCU UUC Uy
CCA | CCG | CUA | CUGJUCA UCG WUA WG
AAA | AAC [AGA |AGCJGAA GAC GGA GGG

TN

ACA [ACG | AUA |AUGJGCA GCGC VA GUG
AAC | AAU | AGC | AGU | GAC GAU GGC GGU

CAC | CAU

Examples of Rademacher functions:

ry(t) = sign(sin2"nt) +_11

Rademacher functions contain only =% 4

elements “+1” and “-1”. Each of the .
matrix columns presents one of the =«v 4

Rademacher functions If each 1

black (white) cell Is interpreted sucheasy 4

that it contains the number +1 (—1). =




C U

A G

Here we show a transformation of the mosaic _
ghenomatrlx [C U; AG]® into the numeric matrix Rg in
the result of such replacements of triplets with strong
and weak roots by means of numbers “+1” and “-1”
correspondingly. This numeric matrix Rq Is called the
“Rademacher form” of the genetic matrix of triplets
[C U; A G]® or briefly the "Rademacher matrix” Rs.



A G]®) with a new black-and-white mosaic (a triplet
nanges its color, if it has U in its odd position; this
gorithm can be described below [Petoukhov, 2008]).
nis new mosaic corresponds to mosaic of one of

C
d

Taking into account another phenomenological fact
about a unique status of uracil U (which is replaced by
thymine T in DNA), a simple U-algorithm exists, which
transforms the matrix [C U; A G]®) into the matrix [C T;

Hadamard matrices Hg.
CCC | OCU | €UC | CUT | UL | ©CT | ULC | UoT
LLA | LG | CLUA | CUG | ULA | ULy | ULA | LULG
CAL | Al | LAl [ O | UAL | VAL | UiAl | LU
CAA | CAG | CGA | CGG | UAA | TAG | UGA | UGG

ACT | AUC | AUU | GOC | GCU | GUC | GUU
ACA | ACG | AUA | AUG | GCA | GOG | GUA | GUG
AAC | AAT | AGC | AGU | GAC | GAL | GGC | GGU
AAA | AAG | AGA | AGE | GAA | GAG | GGA | GGG

=

CCC

CCT

CTC

CIT

TCC

TCT

TTC

TTT

CCA

CCG

CTA

CTG

TCA

TCG

TTA

TTG

CAC

CAT

CGC

CGT

TAC

TAT

TGC

TGT

CAA
ACC

CAG
ACT

CGA
ATC

CGG
ATT

TAA
GCC

TAG
GCT

TGA
GTC

TGG
GTT

ACA

ACG

ATA

ATG

GCA

GCG

GTA

GTG

AAC

AAT

AGC

AGT

GAC

GAT

GGC

GGT

AAA

AAG

AGA

AGG

GAA

GAG

GGA

GGG



Hadamard matrices also contain only entries “+1” and
“-1”. Columns of a Hadamard matrix form a complete

orthogonal set of Walsh functions. If each black
(white) cell of this symbolic matrix is interpreted as a

container of number +1 (-1), then the Hadamard
matrix Hg arises. Each of columns of the numeric
matrix Hg presents one of the Walsh functions.
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Hadamard matrices are intensively explored in digital signal
processing including noise-immunity coding.

For example, codes based on Hadamard matrices have been
used on spacecrafts «Mariner» and «\Voyadger», which
allowed obtaining high-quality photos of Mars, Jupiter,
Saturn, Uranus and Neptune in spite of the distortion and
weakening of the incoming signals.

Hadamard matrices are used to create quantum

computers, which are based on
used in quantum mechanics in t

Hadamard gates. They are

ne form of unitary operators.

Now we reveal and study the connection of the genetic
code with a special kind of Hadamard matrices.



The main mathematical objects of the lecture will be
these two (8*8)-matrices, which reflect
phenomenological properties of the molecular-
genetic ensembles: the Rademacher matrix Rg and
the Hadamard matrix Hg.
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What secrets of the genetic code and living matter
are hidden in these mosaic matrices? Let’s study
these matrices using their “Rademacher
decomposition” and “Walsh decomposition”
correspondingly.



1)1 (1 /111 [-1(-1
1)1 (1 /111 [-1(-1
-1(-1)1 |1 J-1[-1|]-1|-1
Rg=|-1{-1]1 |1 |-1(-1|-1]-1
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Each of matrices Rg and Hg is a sum of 8 sparse matrices, in
which only one of columns is non-zero (all these columns
coincide with Rademacher or Walsh functions):

Rg=Sp+S1+S,+S5+S,+Sc+S.+S-;

Hg=Uy+uU,+U,+us+u,+uc+us+u;

T000 0000 T IO 0 00 00 TO000000
10000000 010 000 00D 10000000
10000000 0-10 0 0 0 0 0 10000000
10000000 |+ |0-10 0 0 0 0 0 10000000
R _ 10000000 010 000 0D H —_ 10000000
8_ 10000000 0100000 D 8— 10000000
10000000 0-10 0 0 0 0 0 10000000
10000000 0-10 0 0 0 0 0 10000000
0010 000D 000 10 0 00 000 01000 ggiggggg ggg}gggg
0010 000D 000 10 0 00 000D 01000 00 1 00000 000 .10000
0010 000D 000 10 0 00 000 0 -10 0 0 00 1 00000 000 10000
o010 000 0|+|o00 10 000|+]|000O0C-1000 00 1 00000 000 10000
00-10 000D 000 -10 0 00 000D 010 0D -
0010 0000 000 10 0 00 000 01000 00 -1 00000 000 -10000
00-10 0000 000 10 0 00 00001000 00 -1 00000 000 10000
0010 0000 000 10 0 00 0000 1000 00 -1 00000 000 -10000
000 00100 00000 0-10 000DO0D0DO0OD -1 00000 100 goooo00D 10
000 0 010D 00000 0D-10 00DO0DD0DO0DOD0OD -1 00000 -10 0 000000 10
000 0 0-100 00000 0-10 000DO0D0DO0OD -1 00000-10 0 000000 10
o000 0-100|+|loooo00o0-10 |+ |000D0O0O0O0-1 00000 10 0 000000 10
000 0 010D 00000010 0000000 1 00000 -10 0 000000 10
000 00100 000000 10 0000000 1 00000 10 0 000000 10
0000 0-100 00000010 0000000 1 00000 10 0 000000 10
000 0 0-100 00000010 0000000 1 00000 -10 0 000000 10

0000 -1 000
0000 -1 000

fgoo0o000 -1
0000000 1
gooooon -1
0000000 1
goonoo00 -1
0000000 1
goo0oo0 -1
0000000 1




rooovoonwo LU L L L LU U -1 Doy
10000000 01000000 10000000 0 1000000
10000000 0-10 00000 -1 0000000 0 1000000
10000000 01000000 10000000 0-1000000

R — l1ooo0000¢0 010 00000 H — 10000000 [+ [ 01000000 |+
8— 10000000 01000O0O0C0D 8— 10000000 01000000
10000000 0-10 00000 10000000 0 1000000
10000000 0-10 00000 10000000 01000000
00 100000 000-10000 0000 -1 000
S N I EH R RN 0o 100000 | |00 10000 | | 0on0 1200
0010 0000| 00010000 00001000 00 1 00000 000-10000 0000 1000
0010 0000]|+|/00010000 00001000 00 100000 000 10000 0000 1000

00-10 000D 000 10 0 00 000 01000 00 -1 00000 + 000 10000 [+ 0000 1 000 |+
00100000 [ooo 10000 00001000 00 -1 00000 000-10000 0000 1 000
00100000| (00010000 0000-1000 00 -1 00000 000 10000 0000 -1 000
oo1o00o000l looo 10000 00001000 00 -1 00000 000-10000 0000 -1 000
00000100 00000010 0000000 -1 00000 100 000000 10 0000000 -1
00000100 00000010 0000000 -1 00000-10 0 000000 10 0000000 1
00000100 00000010 0000000 -1 00000-10 0 000000 10 0000000 -1
00000-10 0 00000 0-10 0000000 -1 00000 10 0 000000 10 0000000 1
00000100 00000010 0000000 1 00000-10 0 |+ | 000000 10 |+ | 0000000 -1
00000100 000000 10 0000000 1 00000 10 0 000000 10 0000000 1
ooono_lou 00000010 0000000 1 00000 10 O 000000 10 0000000 -1
00000100 00000010 0000000 1 00000-10 0 000000 10 0000000 1

and Hg=u,+u+u,+us+u,+u. +u g+U-, every of 16 sparse
matrices s, ... s7, Uo, -, U, iS @ projection operator
because it sat|sf|es the crlterlon P2 = P. It means that
genetic matrices Rg and Hg are sums of oblique
projectors; the genetic system is connected with
projectors.

Now let us show how these “genetic” projectors
allow modeling genetically inherited bio-ensembles.




INHERITED ENSEMBLES OF BIOLOGICAL CYCLES
Any living organism is a huge ensemble of inherited
cyclic processes, which form a hierarchy at different
levels. Even every protein is involved in a cycle of its
"birth-death," because after a certain time it breaks
down into its constituent amino acids and they are
then collected into a new protein. According to
chrono-medicine and bio-rhythmology, various
diseases of living bodies are associated with
disturbances (dys-synchronization) in these
cooperative ensembles of biocycles.

It is known that mathematical cyclic groups are
useful to model natural cyclic processes. But
combinations of the considered genetic projectors
lead to a great number of cyclic groups.




For example, take sum of two projectors s, and s,:

1 0 1 0 0 0 0 0
1 0 1 0 0o 0 0 0
Sp+5z = -1 0 1 0 0 0 0 0
-1 0 1 0 0 0 0 0
1 0 -1 0 0 0 0 0
1 0 -1 0 0 0 0 0
-1 0 -1 0 0 0 0 0
-1 0 -1 0 0 0 0 0

Exponentiation (2'0-5*(505+sz))'\I gives a cyclic group
with its period 8: (20°*(s +s,))N = (279>*(sy+s,))N*8
(here N=1, 2, 3, ...).



Iterative actions of this operator Y = (29>*(s,+s,)) on
an arbitrary 8-dimensional vector X=[x,, X;, X5, X3, Xg,
Xz, Xe, X7] give a cyclic set of vectors, in which only two
coordinates with appropriate indexes 0 and 2 are
cyclic changed, all other coordinates are equal to O:

X*Y' =  27"7%[(xgFX -Xa-X3H X HX5-X6-X7), 0, (Xo+HX;+Xy+HX3-X4-Xs5-X4-X7), 0,0, 0,0,
X*Y = [(X4-X3-X»+X5), 0, (Xg+X;-X¢-X7), 0,0, 0, 0, 0]
X*Y" = 27 [(X4mX1-Xp-X3-XgtXsHXeHX), 0, (XoHXi-Xp-X3+X+Xs-Xg-X7), 0,0, 0,0,
X*Y'=  [(X¢-X;-X+X7), 0, (X4~X3-X;+Xs), 0,0, 0, 0, 0]
X*Y = 27"F[(Xp-X Xt X3-X4-XsHXtX7), 0, (X4-X1-X-X3-XotXsHXe+X7), 0, 0, 0, 0, (
X*Y' = [(Xp+X3-X4-Xs), 0, (X¢-X1-Xo+X7), 0,0, 0, 0, 0]
X*¥Y' = 2777 [(xg X HXpHX3-X4-X5-X6-X7), 0, (Xp-X;-Xo+X3-X4-Xs+Xet+X7), 0,0, 0,0,
X*Y® = [(Xg+X;-X-X7), 0, (X3+X3-X4-Xs), 0,0, 0,0, 0]

X*¥Y = 277 [(Xg+X -Xp-X3+XgHX5-X6X7), 0, (Xo+X;+X,+X;3-X4-X5-X6-X7), 0,0, 0,0,



It means that this cyclic group of operators
allows a selective control (or a selective
coding) of cyclic changes of vectors in
2-dimensional plane (x,, x,) of a 8-dimensional
vector space. Other cyclic groups, which are
based on exponentiation of pairs of the genetic
projectors, possess the same property of a
selective control of cyclic changes in
corresponding 2-dimensional planes.



Exponentiation of sums of different pairs of these
genetic projectors give three kinds of results,
represented in the following symmetric tables by
three colors.

Green cells contain pairs of projectors,
exponentiation of which give similar cyclic groups
with the period 8. All these cyclic groups possess the
property of a selective control of cyclic changes in
corresponding 2-dimensional planes inside an
8-dimensional vector space.



For Hs:
Up| U1 | Uz | U3 |us|us| us| urz

Uof -
ui
Uz
us

U4
us
Ues
uz

Red cells correspond to such sums of projectors,
exponentiation of which shows their “doubling
property” to model a dichotomous reproduction of
%enetic Information in process of mitosis when

iolo%ical cells are dichotomously reproduced:

(sotsy)V = 2V ¥ (sgtsy), .. @ o0

Yellow cells correspond to such sums of projectors,
exponentiation of which shows their “quadruplet
property” to model a quadruplet reproduction of
genetic information in meiosis when gamets are
quadruy)letly reproduced:

((sg+55)2)" = 4 1*(s.+s. )2, .. @~ @ @ @@
0 “6 0 “6




Let’s return to sets of cyclic groups in green
cells. The property of a simultaneously selective
control of different subspaces of a multi-
dimensional space by means of many cyclic
groups is useful for modeling ensembles of
cyclic processes in organisms including different
animal gaits, etc. The simplest example is our
model of human gaits, where cyclic movements
of separate hands and foots can be defined
independently. Fractional exponents for cyclic
groups, for example (2°9°*(s,+s,))V/%, allow
getting any approximation to smooth
(uninterrupted) movements.
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But what one can do if big ensembles with thousands
and more cyclic processes should be simulated?

A proposed decision is based on extensions of the
Rademacher’s and Hadamard’s (8*8)-matrices Rg and
H, into (2M*2N)-matrices by the following expressmns

R ®[1 111N, H,®[1-1;1 1]V, where ®
means Kronecker multlpllcatlon (N) — Kronecker
power, N=1,2,3,..;[1 1;1 1]Jand[1 -1;1 1] -
matrix representations of complex number and
double number with unit coordinates. Each of these
(2N*2N)-matrices are sums of 2N-projectors of the
same “column type". Exponentiation of sums of
different pairs of these new projectors gives as much
cyclic groups as you want. These cyclic groups possess
the same property of a selective control of 2-dimen-
sional subspaces inside 2N-dimensional space.



The revealed matrix approach gives new
opportunities not only for studying inherited
biological phenomena but also for biotechnical

applications including systems of artificial intellect
and robotics.




The problem of inherited ensembles of
biological cycles is closely connected with a
fundamental problem of biological time and
biological watch.

The author puts forward a “projectors
conception”, which interprets living bodies as
colonies of projection operators and multi-
dimensional constructions on a basis of direct
sums of vector sub- -spaces. Any organism is a
whole entity, and it is naturally to
think that not only visual perception
is based on projectors but that all
bioinformatics is connected with them.




The evolution of living
organisms is connected
with their absorption of
solar energy that
is projected on surfaces
of biological bodies by
means of solar rays.
Perhaps this fact can be
considered as one of
reasons of importance
of projection operators
in living bodies.




ABOUT DIRECTION OF ROTATIONS

In configurations and functions of biological
objects frequently one direction of rotation is
preferable (it concerns the famous problem of
biological dissymmetry). Taking this into account, it is
interesting what one can say about a direction of
rotation of vectors under influence of the cyclic
groups of the considered operators? The following
tables give the answer.




Here green cells correspond to cyclic groups on a basis of
sums of pairs of projectors. The symbol O means counter-
clockwise rotation, the symbol © means clockwise rotation.
For example, the action [X,,X;,X,, X3,X4,Xz,Xg,X7]*(2702*(s4+5,) )N
gives counter-clockwise rotations of vectors in (x,, x,)-plane.

Tables show dis-symetric sets of cases of both directions of
rotation: 1) the left table contains only counter-clockwise
rotation; 2) the right table contains the ratio of cases
O:0=5:3. It generates some associations with a general
problem of biological dis-symmetry.



ABOUT HAMILTON QUATERNIONS
Till now we considered sums of pairs of the genetic
projectors. Now let us consider sums of 4 projectors.
Hadamard matrix Hg is sum of two sparse (8*8)-
matrices Hg = HLg+HRg, each of which is sum of 4

projectors: Hg = HLg+HRs =
1 (01 (0f(-1|{0j1|0 ol-1(o(-1{of{1|0]|-1
1|01 (0f(-1|0j1|0 or1|of1({of-1|j0] 1
1o 1(of1{0j1]|0 ol1|o(-1({0f{-1|0]-1
-1|of1(of1|0|1|0|+|0O|-1(O0(1(0|1|0] 1
1|(0(-1(0(1|0|j1|0 ol-1(o(1(o0f{-1|0]|-1
1 |0(-1|0]1|0]1(0 0)1(0)-1{0] 101
11 o(-1(0(-1{0|1]|0 ol1|o(1(of1|0]-1
-1]0f(-1)0[-1]0]1(0 oj-1{o)-1{oj-1j0of1

Each of the matrices HLg and HR; can be decomposed

into 4 sparse matrices, set of which is closed in
relation to multiplication and defines a known table
of multiplication of Hamilton quaternions:



HL;=HLg+HLg + HLgy+ HLgz =
10000000 00100000
10000000 00100000
00100000 10000000
00100000 + |-10000000
00001000 00000010
00001000 00000010
00000010 000 0-1000
00000010 000 0-1000
00 00-1000 00000010
00 00-1000 00000010
00000010 Q0001000
00000010 + 00001000
10000000 00-1000 00
100000 00 00-100000
00-100000 10000000
00-100000 10000000
Hlag | HLm HLaz HLas

HLag

HE, = HRy + HRy + HRy, + HRy =
0-10 0000 O 000-10 00 0
010 00000 0001000 O
D00-10000 0100000 0
000 10000 0-10 00000
000 00100 |+ |loooooooa
000 00100 00000001
000 000 0-1 00000100
D00 DDO0OD1 00000-100
00000100 0000000 -1
D0000-100 0000000 1
pooooo0o0-1 |+ looooo-10 o
DO0DDOD1 00000100
0-10 0000 O 00010000
01000000 000-1000 0
00010000 01000000
000-10000 0-1000000

HEgs | HRzy | HEx | HRm

HLg

HLe:

HLe

The multiplication table of Hamilton quaternions.



It means that the (8*8)-matrix Hg is sum of two
Hamilton quaternions with unit coordinates or,
figuratively speaking, a “double quaternion”. This fact
generates an association with a double helix of DNA.

HH = HLH+HH.B =

1 (01 (0f(-1(O0(1(0 O(-1(0(-1(0( 1 (0]-1
1 (0|1 |0f-1|]0|1(0 of1)]0(1({0]-1|0( 1
-1{0]j1|0({1]01(0 0({1)0-1({0]-1]0(-1
-1{oj1|of{1|0|1|{0|+|Of-2|]0O0l1(0] 1|01
1(0(-1(0(1(O0(1(0O O(-1(0(1(0O(-1(0|-1
1(0(-1(0(1(O0(1(0O O(1(0(-1(0f1(0| 1
-1({0]-1|0(-1]01(0 o({1)011(0]1]|0(-1
-1{0]-1]10{-1]0]1[0 0(-1]0]-1{0]-1]0[ 1




Hamilton quaternions are closely
related to Pauli matrices, the
theory of the electromagnetic field
(Maxwell wrote his equation on
the language of these quaternions),
the special theory of relativity, the theory of splns
guantum theory of chemical valences, etc. In the
twentieth century thousands of works were devoted
to quaternions in physics [http://arxiv.org/abs/math-
ph/0511092]. Now Hamilton quaternions are
manifested in the genetic code system. Our scientific
direction - "matrix genetics" - has led to the discovery
of an important bridge among physics, biology and
informatics for their mutual enrichment.




The connections of the genetic code with
hypercomplex numbers seem to be interesting since
classical theory of noise-immunity communication is
based on multi-dimensional geometry: information
sequences are represented as sequences of multi-

dimensional vectors
Vo, Vy, amplitude

for thi

analysis of

characteristics

- '_“"'-“—"”‘—" *h ~ time

Vo

aiin \lm Ld
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1({1]|-1]-1]J1]1]|1]1
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The genetic (8*8)-matrix Hg, which is

THE 8 PROJECTORS AND HAMILTON BIQUATERNION
sum of the 8 projectors, can be

decomposed also in another way into a
Hg = HgotHg tHgytHgs+Hg,tHgs +HgetHg;

set of new 8 sparse matrices:

This set of 8 matrices is also closed in relation to
multiplication and defines a known multiplication

table of Hamilton biquaternions :
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The multiplication table of Hamilton biquaternions (or
Hamilton quaternions over field of complex numbers)



ABOUT SPLIT-QUATERNIONS BY J.COCKLE

The Rademacher matrix Rq is also sum
of 2 sparse (8*8) matrlces Rg = RLg+RRg,
each of which is sum of 4 prOJectors

=R_T_I+ERI=
1 (0 1|01 (0| -1 |0 ol 1|0(1|0|1(0]-1
1 (0 1|01 (0| -1 |0 ol 1|0(1|0|1(0]-1
-1 {0 1] 0]-1) 0| -1]0 0|-1|0(1|0|-1(0]-1
1(oel 1 0]-1) 0| -1 |0)+0O]-2|0|L|0|-1|0]-1
1 (0(-1y 0| 1|0] 10 0| 1(0|-1|0| 1|01
1 (0} -1 0|1 (0| 1|0 0|1 |0(-1|0|1 (0] 1
-1 ({0 -1 0]-1) 0| 1|0 0|-1|0(-1|0|-1({0] 1
-1 ({0 -1 0]-1) 0| 1|0 0|-1|0(-1|0|-1({0] 1
Each of the matrices RLg and RR; can be decomposed

into 4 sparse matrices, set of which is closed in
relation to multiplication and defines a known table
of multiplication of split-quaternions by J.Cockle
(1849 year, HITP://EN.WIKIPEDIA.ORG/WIKI/SPLIT-QUATERNION).



http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�
http://en.wikipedia.org/wiki/Split-quaternion�

RL8 =RL80+RL81+RL82+RL83=

10000000
1000000
Q0100000
QD100 ODH +
QOO0 ] DD

Q0001 00D
Q00001 D

Q0000010

Q00010 0D
Q00010 OD
o0 000D-10
o0 000D-10 +
100000 0D
10 0000 0D
o0-1000 00
Q0-1000 00

001000 0D
D10 0O
-1000 0000
-1000 0000
DGO OO 1D

000 D00 10
000 -1 000

000 0-1 000

01000000
0L 0o00ndD
00010000
00010000
o000 Y00
o000 Y00
00000001
00000001

RR8 =RR80+RR81+RR82+RR83=

00010 00D
00010 00D
O-1000® 00D
O-1000® 00D
00000 001
00000 001
00000 -100
00000 -100

o000 D0D-10
0000 DD-10
00 00-1000
00 00-1000
00-100000
00-10 0000
-1000 0000
-10 000000

o000 0010 O
00D D010 D
00D DODD-1
000 00D0D0-1
010 0000 O
010 0000 O
000-1 000 O
o -1 0

0000000 -1
0000000 -1
00000 -100
o000 -1 00
0 -1 0o iy
000-10000
0-1000000
i =1 o000 o e

THE MULTIPLICATION TABLE OF SPLIT-QUATERNIONS
BY J.COCKLE.




Split-quaternions by Cockle are also used In
mathematics and physics, for example, in A.Poincare’s
model of Lobachevskiy’s geometry
(http://en.wikipedia.org/wiki/Split-quaternion).
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-1
=1

-1]-1]-1]-1

-1{-1|-1]-1

-1j]1]1 11

+

-11-1§J1 |1 |1 |1

=1

1
-1 -1({-1{-1}-1]-1|1 |1

-1|-1(-1({-1}J-1]-1|1 |1

1

1/1/1/1}11]1
-1{-111 |1
-1]-111 (1

1|11 (1]}1(1
1

The 8 projectors and Cockle’s bi-split-quaternions
decomposed also in another way into
Rg = RgotRg11Rg,7Rg3+Rg4+Rg5+Rg6+Rg;

The genetic (8*8)-matrix Ry, which is
a set of new 8 sparse matrices:

sum of the 8 projectors, can be
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multiplication and defines a known multiplication

This set of 8 matrices are also closed in relation to
table of Cockle’s biquaternions :
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The multiplication table ot bisplit-quaternion by

J.Cockle (or split-quaternions over field of complex

numbers)



Here we have received new examples of the
effectiveness of mathematics: abstract
mathematical structures, which have been
derived by mathematicians at the tip of the pen
160 years ago, are embodied long ago in the
information basis of living matter - the system
of genetic coding. The mathematical structures,
which are discovered by mathematicians in a
result of painful reflections (like Hamilton, who
has wasted 10 years of continuous thought to
reveal his quaternions), are already represented
in the genetic coding system.
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Let’s return to

* ) 1Jo[1]o[-1]o]1]o] [e[-1[o[-1]o] 1]o[-1
(8*8)-matrix 1]0[1]0|-1|0[1]0| [O[1|0[L1]0[-1[0]1
: 1]jo|l1]o|1|o[1]0| [o]1]o[1]o[-1]0[1
representations 1{o|1]o|1|o|1]0]|-[0]-L]0o|1]0|1]0]1
HLsandHRSOf 1|o[-1|o|1|o0|1]o| [o|-1]o[1]o|-1]0]-1
- 1/0[-1]o|1]0|1]0]| [O][L1|0]|-1]0] 1]0] 1
Hamlltop . 1|o|-1]o[-1]|o|1]0| [o]1]o[1]o|1[0[-1
quatern|onsw|th -1{o]-1]of[-1]0]1]0 oj-1]o]-1]o]-1]0]1

unit coordinates.
Exponentiation of each of these matrices (with a

coefficient 0.5) leads to a cyclic group with its period 6

(n=1,2,3,..): (0.5*HLg)"*® =(0.5*HL,)";

(0.5*HRg)"*® =(0.5*HRy)".

A similar expression is true for

a classical (4*4)-matrix Q=05*]-

representation of Hamilton

guaternion Q with unit

coordinates: (0.5*Q)"*® =(0.5*Q)"




One can dispose all 6 members of any

of these cyclic groups (for example,

members of the group of (4*4)-matrices
(0.5*Q)"*° =(0.5*Q)" ) on a circle to show

a complete analogy of their set
to famous Newton’s color circle
of inborn properties of

human color perception.

1]1]-

Q=05|-1]1
1 -1
11

[y e o ) [
et | e | e | et

Q®=E,




The Newton’s color circle
shows the following:

1) each of 6 colors on the
circle is the sum of two
adjacent colors (the same is 5
true for these 6 quaternions R
on the circle);

| —Q4
2) the three colors in vertices =
of each of 2 triangles of the “star of David” neutralize
each other in their summation (the same is true for
the quaternions in each of triangle of the “star of
David”, whose sum is equal to 0).
3) complementary colors, which are opposite each
other on this circle, neutralize each other in their
summation (sum of any two diagonal quaternions on
the circle is also equal to 0).



Briefly speaking, the red, magenta, blue,
cyan, green and yellow colors are formally
expressed by means of the Hamilton
quaternions Q, @2, Q3, Q% Q>, Q°
correspondingly. The problem of mixing of
colors can now be solved in terms of the cyclic
group of Hamilton quaternions Q™.

Using the mentioned (2"*2")-matrix
representations of Hamilton quaternions allows
encoding (or controlling) different colors in
different sub-spaces of an internal space of a
living body.



Algebraic Invariances and positional permutations
In triplets
The theory of signal processing pays a special

attention to permutations of information elements. Six
variants of permutations of positions inside a triplet
exist: 1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2, 3-2-1.

et us study transformations of the Rademacher and
Hadamard representations of the genomatrix
[C T; AG]® in all these cases of positional
permutations in all triplets. A simultaneous
permutation of positions in triplets transforms the most
of the triplets In its matrix cells. For example, in the
case of the transformation of the order of positions 1-
2-3 Into the order 2-3-1, the “white” triplet CAG with
the weak root CA is transformed into the “black”
triplet AGC with the strong root AG. In the result, the
quite new mosaic genomatrices arises.




In the result of these positional
permutations in triplets, five
additional Rademacher matrices
arise from the initial Rademacher
genomatrix Rg; each of them is a
new matrix representation of the:
same bi-spit-quaternion by
Cockle with unit coordinates.
Also In the result of these
permutations, five new Hadamard
matrices come from the initial
Hadamard genomatrix Hg; each of
them Is a new representation of
the same Hamilton's _
biquaternion with unit coordinate




Each of these 5 new Rademacher
matrices can be also decomposed
Into 8 projectors with Rademacher
functions in their non-zero columns

Each of these 5 new Hadamard
matrices can be also decomposed
Into 8 projectors with Walsh |
functions in their non-zero columnsj mege ok - Ty -

All ideology of projectors and | A, -1
their combinations Is conserved § 7 |

for these new matrices, which Sy "PANAY S
arise due to positional MY E
permutations in triplets. |




The invariance of matrix algebras with different
permutations of elements in genomatrices is
Interesting, in particular, due to the
metamorphosis of the organisms. For example,
in the metamorphosis of a butterfly, chrysalis
does not eat at all and has a fixed atomic

composition, but - by means
of genetically determined
permutations of elements — /v BN
chrysalis turns into a butterfly,

€

which is a quite different
organism with the same DNA.




It seems that the nature likes projectors. For example,

electromagnetic vectors are represented as sums of

their projections in a form of electric and magnetic
vectors.



CYCLIC CHANGES AND THE “I-CHING”

In the field of molecular genetics, Nobel prize winner
F.Jacob, a famous Prof. G.Stent (1965) and some other
authors already noted some parallelisms between the
molecular genetic system and a symbolic system of
the Ancient Chinese book “I-Ching” (“The Book of
Changes”), which was written a few thousand years
ago.

This book had a great influences on different
aspects of life of people not only in China but also in
many other countries.



The state flag of South Korea
with symbols of triplets from
“I-Ching”




Cyclic and other patterns, which arise in “matrix
genetics”, have many new analogies with the system
of “I-Ching”, Chinese circular calendars, the Zodiac
system and patterns of Ancient Oriental medicine. In
other words, here we get new materials for a problem
of “a connection of times”.
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“I-Ching” deals with Yin-Yang symbols including the

four basic digrams
The famous table of 64 hexagrams in Fu-Xi’s order

Young Yang ( ==|) and Young Yin ( ==).
exists in this symbolic system




The ancient Chinese claimed that the system
of ”I-Ching" Is a universal archetype of nature, a
universal classification system. They knew
nothing about the genetic code, but the genetic
code iIs constructed in accordance with the
”1-Ching".



Briefly about ensembles of phyllotaxis patterns

Let us briefly note that a study of sums of genetic
projectors has given new possibilities of modeling
some other inherited biological phenomena including
a phenomenon of ensembles of phyllotaxis patterns

inside one organism.




It is known that an
organism can have many
phyllotaxis patterns in its
parts. Figure shows an
example of a spruce with many
phyllotaxis cones. Each of N
these cones can be interpreted as a sub space of 3
multi-dimensional internal space of this tree. The
proposed approach of genetic projectors and their
sums allows modeling such ensemble of phyllotaxis
patterns, each of which is realized in its own subspace
with an individual velocity and a phase shift of
development (see some details in the article
[Petoukhov, 2013, http://arxiv.org/abs/1307.7882 ]).



http://arxiv.org/abs/1307.7882�

An example of modeling three phyllotaxis patterns,
each of which belongs to its own 2-dimensional

sub-space of a general multi-dimensional internal
space.



PROJECTORS AND THE EXCLUSION PRINCILE OF
EVOLUTION OF DIALECTS OF THE GENETIC CODE
Science knows 19 dialects of the genetic code

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprint

gc.cei . Some of
them have another

The Standard Code
The Vertebrate Mitochondrial Code
The Yeast Mitochondrial Code

b I adC k-a N d -W h |te mosa | C The Mold, Protozoan, and Coelenterate Mitochondrial Code anc

in their matrix
presentation

[C U; A G]® (another
system of triplets with
strong and weak roots).

Mycoplasma/Spiroplasma Code

The Invertebrate Mitochondrial Code

The Ciliate, Dasycladacean and Hexamita Nuclear Code
The Echinoderm and Flatworm Mitochondrial Code
The Euplotid Nuclear Code

The Bacterial, Archaeal and Plant Plastid Code

The Alternative Yeast Nuclear Code

The Ascidian Mitochondrial Code

The Alternative Flatworm Mitochondrial Code
Blepharisma Nuclear Code

Chlorophycean Mitochondrial Code

Trematode Mitochondrial Code

Scenedesmus Obliquus Mitochondrial Code
Thraustochytrium Mitochondrial Code
Pterobranchia Mitochondrial Code

Candidate Division SR1 and Gracilibacteria Code


http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi�
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi�
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi�
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi�

Some of the dialects have another black-and-white
mosaic in their matrix presentation [C U; A G]®
(another system of triplets with strong and weak

The Vertebrate Mitochondrial Code: : The Standard Code:

CCC | CCU | cuc 1 cuu T Ucc | uco | Uuc | Uuu ccc | ccu | cuc | cuu | uce | ucu | vuc | vuu
Pro Pro Len Leu Sar Car Phe Phe Pro Pro Leu Leu Ser Ser Phe Phe
CCA | oo | coa | cug | uca [ Uce | Uua | UuG CCA | ccG | cuA | cuG | ucA | UcG | UUA | UUG
Pro Pro Len Len SeT Ser Leu Leu Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | oGU | UAC | UAD | UGe | OGO CAC | CAU | €GC | CGU | UAC | UAU | UGC | UGU
His His Arg | Arg | Tw Tyt Cys | Cys His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG CAA | cAaG | cGA | cGG | vaa | vag |uca | uGa
Gln Gln Arg Arp Stop Stop T trp Gln Gln Arg Arg Stop Stop | Stop trp
ACC | ACU | AUC | AUT | GCC | GCU | GUC | GUU ACC | AcU | AuC | AuU | Gee | Geu | GUC | GUU
Thr Thr Ila Il= Als Als “al “al Thr Thr Ile Ile Ala Ala Val Val
AcCA | acG | ata [ AaUuG 1 GCA | GG | GUA | GUG ACA ACG | AUA AUG GCA GCG GUA | GUG
Thr Thr et Met Al Als “al “al Thr Thr | Ile Met Ala Ala Val Val
AAaC AATT AGC | AU | GAC GALT GGC | GGU AAC AAU | AGC AGU GAC GAU GGC GGU
Asn Asn Tar Sar Asp Asp Gly Gly Asn Asn Ser Ser Asp Asp Gly Gly
BAA | AAG | AGA | AGG | GAA | GAG | GEA | e AAA AAG | AGA AGG GAA | GAG GGA | GGG
Lys Lys | Swp | Stop | Gln | Gh Gly | Gly Lys Lys | Arg Arg Glu | Glu Gly Gly

The Invertebrate Mitochondrial Code: The Echinoderm and Flatworm Mitochondrial Code:
CCC | CCU | CUC | CUU | UCC | UCU | uucC | uuu CCC | O | COC | CUU | W | UCT | UUC | U
Pro Pro Leu Leu Ser Ser Phe Phe Pro Pro Leu Leu Ser Ser Phe Fha
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG CCA | OOG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu Pro Pro Len Len Sar Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU CAC | CAU | OGC | OG0 | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys Hiz Hisg Arg Arg Tyt Ty Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG CAA | CAG | CGA | OG0 | UAA | TAG | UGA | UGG
Gln Gln Arg Arg Stop | Stop Trp trp Glo Gln Arg Arg Stop | Stop Trp irp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU ACC [ ACU | AUC | AUTU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val Thr Thr Ile Ile Ala Ala Wal Wal
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG ACA | ACG | AUA | AUG | GCA | GOG | OUA | GUG
Thr Thr Met Met Ala Ala Val Val Thr Thr | Il= et Ala Ala Wal WVal
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU AAC | AAL | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG AAA [ AAG [ AGA | AGD | GAA | GAG | GGA | GGG
Lys Lys Ser Ser Glu Glu Gly Gly Asn Lys | Sex SET Gl Gl Gly Gly




The Yeast Mitochondrial Code:

CCC | CCU | CUC | CUA UCC | UCU | UUC | Uuu
Pro Pro Thr Thr Ser Ser Phe Phe
CCA | CCG | CUU | CUG UCA | UCG | UUA | UUG
Pro Pro Thr Thr Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr Met Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys | Arg Arg Glu Glu Gly Gly
The Bacterial, Archaeal and Plant Plastid Code:
CCC | CCU | CUC | CUU | UCC | UCU | uUuC | Uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA UGG
Gln Gln Arg Arg Stop Stop | Stop trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr Ile Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA AGG GAA | GAG GGA | GGG
Lys Lys | Arg Arg Glu Glu Gly Gly

The Euplotid Nuclear Code:

CCC | CCU | CcuC | CUU | UCC | UCU | UucC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA UGG
Gln Gln Arg Arg Stop Stop | Cys trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val

ACA | ACG | AUA AUG | GCA | GCG | GUA | GUG
Thr Thr Ile Met Ala Ala Val Val

AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly

The Alternative Yeast Nuclear Code:

CCC | CCU | CcuC | CUU J UCC | UCU | UUC | UuU
Pro Pro Leu Leu Ser Ser Phe Phe
CCA CCG CUA | CUG UCA UCG UUA UuG
Pro Pro Leu | Ser Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA UGG
Gln Gln Arg Arg Stop Stop | Stop trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val
ACA | ACG | AUA AUG | GCA | GCG | GUA | GUG
Thr Thr Ile Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG GAA | GAG | GGA | GGG
Lys Lys | Arg Arg Glu Glu Gly Gly




The Ascidian Mitochondrial Code:

CCC | CCU | CUC | CUU | UCC | UCU | UuC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr Met Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG GAA | GAG | GGA | GGG
Lys Lys | Gly Gly Glu Glu Gly Gly

Blepharisma Nuclear Code:

CCC | CCU | CUC | CUU | UCC | UCU | UuC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA UGG
Gln Gln Arg Arg Stop | Gln Stop trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val
ACA | ACG | AUA AUG | GCA | GCG | GUA | GUG
Thr Thr Ile Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG GAA | GAG | GGA | GGG
Lys Lys | Arg Arg Glu Glu Gly Gly

The Alternative Flatworm Mitochondrial Code:

CCC | CCu | CUC | CUU | UCC | UCU | UUC | UUU
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr [le Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Asn Lys Ser Ser Glu Glu Gly Gly
Chlorophycean Mitochondrial Code:
CCC | CCu | CUC | CUU | UCC | UCU | UUC | UUU
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Leu Stop trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr [le Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly




Trematode Mitochondrial Code:

Scenedesmus Obliquus Mitochondrial Code:

CCC | CCu | CUC | CUU | UCC | UCU | UucC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp

ACC | ACU AUC | AUU | GCC | GCU GUC | GUU
Thr Thr lle Ile Ala Ala Val Val

ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr Met Met Ala Ala Val Val

AAC | AAU AGC | AGU | GAC | GAU GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG AGA | AGG | GAA | GAG GGA | GGG
Asn Lys Ser Ser Glu Glu Gly Gly

Thraustochytrium Mitochondrial Code:

CCC CCU | CcUC CUU | UCC [ UCU | UuC | yuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Stop Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gin Gin Arg Arg Stop Stop Stop trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr lle Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly

CCC | CCU | CcuC | CUU | UcCc | ucu uucC | UUU
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Stop Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Leu Stop trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr lle Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly

Pterobranchia Mitochondrial Code:
CCC | CCU | CUC | CUU | UCC | UCU | UucC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr lle Met Ala Ala Val Val
AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA AAG AGA AGG GAA | GAG GGA | GGG
Lys Lys Ser Lys Glu Glu Gly Gly




Candidate Division SR1 and Gracilibacteria Code:

CCC | CCU | CuC | CUU | UCC | UCU | UuC | Uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Gly trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val

ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr [le Met Ala Ala Val Val

AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly

The Ciliate, Dasycladacean and Hexamita Nuclear Code:

CCC | CCU | CUC | CUU | UCC | UCU | UuC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG UGA UGG
Gln Gln Arg Arg | Gln Gln Stop trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile lle Ala Ala Val Val

ACA | ACG | AUA AUG | GCA | GCG | GUA | GUG
Thr Thr Ile Met Ala Ala Val Val

AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG GAA | GAG | GGA | GGG
Lys Lys | Arg Arg Glu Glu Gly Gly

The Mold, Protozoan, and Coelenterate Mitochondrial
Code and the Mycoplasma/Spiroplasma Code:

CCC | CCU | CUC | CUU | UCC | UCU | UuC | uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Tip trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU

Thr Thr lle Ile Ala Ala Val Val
ACA | ACG | AUA AUG | GCA | GCG | GUA | GUG
Thr Thr Met Ala Ala Val Val

lle

AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly

AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Glu Glu Gly Gly

Arg Arg

The set of 19 dialects of the genetic code contains 13
dialects with a “typical mosaic” of their matrix
representations and 6 dialects with non-typical mosa



Candidate Division SR1 and Gracilibacteria Code:

CCC | CCU | CuC | CUU | UCC | UCU | UuC | Uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Gly trp

ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val

ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr [le Met Ala Ala Val Val

AAC | AAU | AGC | AGU | GAC | GAU | GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA | AGG | GAA | GAG | GGA | GGG
Lys Lys Arg Arg Glu Glu Gly Gly

The Ciliate,

Dasycladacean and Hexamita Nuclear Code:

I CUC | CUO | uCC | ucy UUC | U
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | O0G CUA | CUG | UCA | UCG UUA | UG
Pros Pro Leu Leu Ser Ser Leu Leu
Cal | Cal CGC | OGU | UAC | DAL UG | UGL
His His Arg Arg Tyr Tyr Cys Cys
LAA CAG COA G LAA LAl LilpA LG
Giln (Giln AI:'E_ At‘g (iln (iln Stop tp
ACC | ACU AUC | Al | GOC | GCLU GUC | GLUL
Tha Thr Iz Iz Ala Ala “al Wal
ACA | ACG ATA ALG | GCA | GOG | GUA | GUG
Tha Thr [z bt Ala Ala “al Wal
AAC AAL AGC AGL GAC GAlLl G Cacall
A Asn Sel Se Asp Asp Gl Gl
AAA AALS LT WL LiAA A iiA LK
Lys Ly g g Gilu Gilu Gl Gl

The Mold, Protozoan, and Coelenterate Mitochondrial
Code and the Mycoplasma/Spiroplasma Code:

CCC | CCU | CcUuC | CUU | UCC | UCU | UuC | Uuu
Pro Pro Leu Leu Ser Ser Phe Phe
CCA | CCG | CUA | CUG | UCA | UCG | UUA | UUG
Pro Pro Leu Leu Ser Ser Leu Leu
CAC | CAU | CGC | CGU | UAC | UAU | UGC | UGU
His His Arg Arg Tyr Tyr Cys Cys
CAA | CAG | CGA | CGG | UAA | UAG | UGA | UGG
Gln Gln Arg Arg Stop Stop Trp trp
ACC | ACU | AUC | AUU | GCC | GCU | GUC | GUU
Thr Thr Ile Ile Ala Ala Val Val
ACA | ACG | AUA | AUG | GCA | GCG | GUA | GUG
Thr Thr Met Ala Ala Val Val
lle
AAC AAU AGC | AGU | GAC | GAU GGC | GGU
Asn Asn Ser Ser Asp Asp Gly Gly
AAA | AAG | AGA AGG GAA | GAG GGA | GGG
Lys Lys Glu Glu Gly Gly
Arg Arg

The set of 19 dialects of the
genetic code contains
13 dialects with a “typical
mosaic” of their matrix
representations and
6 dialects with non-typical

mosaics.




The author notes the following non-trivial
phenomenological fact: If each of black (white)
triplets is replaced by +1(-1) in the matrices, every of
these numeric matrices of the genetic dialects is sum
of projector operators. One can name this fact as the
“projection rule” of dialects of the genetic code.

So the following exclusion principle is proposed:
- nature forbids such dialects of the genetic code, in
which the division of the set of 64 triplets into two
subsets of triplets with strong and weak roots leads
to a violation of "the projection rule”.

Discovering exclusive principles of nature is an
important task of mathematical natural science (the
exclusive principle by Pauli in quantum mechanics is
one of examples).



About the main role of informatics in living matter:

“Notions of “information” or “valuable information”
are not utilized in physics of non-biological nature
because they are not needed there. On the contrary, in
biology notions “information” and especially “valuable
Information” are main ones; understanding and
description of phenomena in biological nature are
Impossible without these notions. A specificity of “living
substance” lies in these notions” (Chernavskiy, 2000, “The
problem of origin of life and thought from the viewpoint of
the modern physics”,- “Progress of Physical Sciences”,
170(2), p.157-183 (“Uspehi Physicheskin Nauk™, in
Russian)). Prof. Chernavskiy is a head of Department of
theoretical biophysics in Physical Institute of the Russian
Academy of Sciences.




The author has published four books about matrix
genetics in Russia (2001, 2008) and in the USA (2010
and 2011 years) and many thematic articles (see his
personal web site http://petoukhov. com/ ).
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But materials of this lecture are presented
mainly In the article:

S.Petoukhov “The genetic code, algebra of
projection operators and problems of inherited
DIO O?IC&] ensembles
nttp://arxiv.org/abs/1307.7882



http://arxiv.org/abs/1307.7882�

CONCLUSIONS

Projection operators are one of

useful notions and mathematical |
study the genetic coding system a
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en

al

the most
nstruments to
nd genetically

nerited biological phenomena ir

cluding

sembles of cyclic processes. Living matter Is
algebraic essence in its informational
fundamentals. A development of algebraic
biology Is possible with using approaches of
matrix genetics.



THANK YOU FOR YOUR ATTENTION!

S.Petoukhov: http://petoukhov.com/,
http://symmetry.hu/isabm/petoukhov.html
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Fractal genetic networks and rules of long nucleotide
sequences are presented in the article:

“Fractal genetic nets and symmetry principles in
long nucleotide sequences” - “Symmetries in genetic
information and algebraic biology”, cneunanbHbIn
BbIMYCK XypHana “Symmetry: Culture and Science”,
Guest editor: S. Petoukhov, 2012, vol. 23, Ne 3-4, p.
303-322. http://symmetry.hu/scs online/SCS 23 3-

4.pdf



http://symmetry.hu/scs_online/SCS_23_3-4.pdf�
http://symmetry.hu/scs_online/SCS_23_3-4.pdf�

Genetic Hadamard matrices

Now we will show that properties of genetic alphabets
bind the genetic system with a special sub-family of
Hadamard matrices which are one of the most famous tools
In technology of signal processing.

Two of essential properties of the 4-letter alphabet of
nitrogenous bases A, C, G, T are connected with unique
status of thymine T:

- 1) each of three bases A, C, G
has the important amino-group
NH,, but the fourth base T
has not It;

- 2) the letter T is a single base
In DNA, which is replaced In
RNA by another base U (uracil).




- Taking Into account this unique status of the letter
T, we have revealed the following “T-algorithm” $or

“U-algorithm™), which can be used in computer o
organisms and which transforms the Rademacher
matrix Rg Into a Hadamard matrix Hg :




By definition the T-algorithm contains two steps:

- 1) each of triplets in the black-and-white (8*8)-
genomatrix (for example, in the matrix [C T; A G]®)
changes its color into the opposite color each time
when the letter T stands in an odd position of
the triplet (in the first or In the third position);

- 2) then black triplets and white triples are

Interpreted as entries “+1” and “-1” correspondingly.

TCC | TCT | TTC | TTT CCC | cCT [ CTC | CTT | TCC| TCT | TTC | TTT
TCA | TCG | TTA | TTG CCA[CCG | CTA [ CTG | TCA| TCG | TTA | TTG
TAC | TAT | TGC | TGT CAC | CAT| CGC| CGT| TAC | TAT | TGC | TGT
TAA | TAG | TGA | TGG j> CAA| CAG | CGA| CGG| TAA | TAG | TGA | TGG
GCC | GCT | GTC | GTT [TACC| ACT| ATC | ATT | GCC| GCT| GIC | GIT |
GCA | GCG | GTA | GTG ACA| ACG| ATA | ATG | GCA| GCG | GTA | GTG
GAC | GAT | GGC | GGT AAC | AAT | AGC [ AGT | GAC| GAT | GGC| GGT
GAA | GAG | GGA | GGG AAA | AAG | AGA [ AGG | GAA| GAG| GGA| GGG




By definition a Hadamard matrix of dimension “n”
IS the (n*n)-matrix H(n) with elements “+1” and “-1”.
It satisfies the condition H(n)*H(n)" = n*1_, where
H(n)" is the transposed matrix and I is the identity
(n*n)-matrix.
Rows of Hadamard matrices form a complete
orthogonal system of Walsh functions. Tens of
thousands of publications are devoted to applications
of Hadamard matrices in signal processing techniques:
noise-immunity coding, data compression, etc.




	The genetic system and �algebras of projection operators�Sergey Petoukhov�Head of Lab of Biomechanical systems,�Russian Academy of Sciences, Moscow��� ��
	���    Science has led to a new understanding of life itself: «Life is a partnership between genes and mathematics»  (Stewart I. Life's other secret: The new mathematics of the living world. 1999,  New-York: Penguin).� � But what kind of mathematics is a partner with the genetic code and defines the structure of living matter? This lecture shows that phenomenology of ensembles of molecular-genetic elements  is connected with ensembles of projection operators, which are well-known in physics, informatics, chemistry, etc.��
		Information from the micro-world of genetic molecules dictates constructions in the macro-world of living organisms under strong noise and interference.�This dictation is realized by means of unknown algorithms of multi-channel noise-immunity coding.�For example, in accordance with Mendel's laws of independent inheritance of traits, colors of human skin, eye and hairs are genetically defined independently. So, each living organism is an algorithmic machine of multi-channel noise-immunity  coding. To understand this machine we should use the theory of noise-immunity coding, which is based on matrix representations of digital information. Correspondingly we search mathematics of genetic systems in matrix representations of ensembles of genetic elements.
	���������	Our visual perception and a “projection method” in the drawing are based on projections of external objects on retina and a drawing plane. In mathematics, such operations of projections are expressed by means of square matrices, which are called “projection operators” (or “projectors”). 
	����	�   The following matrix P is an example of a projector, which makes a projection of vector [x, y, z] on the plane [x, y, 0]:� ����	�	A necessary and sufficient condition that a matrix P is a projection operator is given by the criterion: P2 = P. Many matrices in this lecture will satisfy this criterion. �	�����
	�	Projection operators are used widely in math, physics (including quantum mechanics), chemistry, informatics, logics, etc. Two kinds of projectors exist: orthogonal �projectors are expressed �by symmetric matrices; oblique �projectors – by asymmetric �matrices (they are less studied).�  	This lecture shows that projectors can be also used in studying and modeling properties of the genetic code system and many inherited biological ensembles including ensembles of cyclic  processes, phyllotaxis patterns, etc.��
	����	��EXPLANATION ABOUT GENETIC MATRICES R8 AND H8�	Theory of noise-immunity coding is based on matrix methods. For example, matrix methods allow transferring high-quality photos of Mar’s surface via millions of kilometers of strong interference. In particularly, Kronecker families of Hadamard matrices are used for this aim. ���������Here (n) means a Kronecker power.�����
	����	���By analogy with theory of noise-immunity coding, the 4-letter alphabet of RNA (adenine A, cytosine C, guanine G and uracil U) can be represented in a form of a (2*2)-matrix [C U; A G] as a kernel of a Kronecker family of matrices [C U; A G](N), where (N) means a Kronecker power. The third Kronecker power of this alphabetic (2*2)-matrix gives the (8*8)-matrix of 64 triplets disposed in a strong order. These 64 triplets encode amino acids of proteins.�������������
	��Two first positions of each triplet is termed as a “root” of the triplet. The phenomenological fact is that the set of 64 triplets is divided by the nature into two equal subsets with 32 triplets in each. The first subset contains 32 triplets with “strong roots” CC, CU, CG, AC, UC, GC, GU, GG (it means that all triplets, which �have one of these roots, encode the same amino acid). The second subset contains 32 triplets with “weak roots” CA, AA, AU, AG, UA, UU, UG, GA (it means that all triplets, which have one of these roots, encode not the same amino acid). �  Whether any symmetry exists in a disposition of triplets with strong and weak roots in the matrix of triplets [C U; A G](3) constructed formally ?�   ���
	���������������  �  Figure shows triplets with strong roots (black color) and weak roots (white color) in the Standard Genetic Code and the Vertebrate Mitochondrial Genetic Code 
	It should be noted that a huge quantity 64! ≈ 1089 of variants exists for dispositions of 64 triplets in the (8*8)-matrix. For comparison, the modern physics estimates time of existence of the Universe in 1017 seconds. It is obvious that an accidental disposition of the 20 amino acids and the corresponding triplets in a (8*8)-matrix will give almost never any symmetry.��
	�    But unexpectedly the phenomenological disposition of the 32 triplets with strong roots (black color) and the 32 triplets with weak roots (white color) has a symmetric character:   1) both quadrants along each of diagonals are identical by their mosaic; 2) the upper half and the lower half of the matrix are mirror-anti-symmetric to each other in its colors: any pair of cells, disposed by mirror-symmetrical manner in these halves, possesses the opposite colors. �������
	 ��                  [C U; A G](3) =������The most important fact �is that a mosaic �character of each of �columns corresponds �to an odd meander-like function. But such odd meander-like functions are well-known in theory of signal processing under the name “Rademacher functions”.�
	���������������������Examples of Rademacher functions:���Rademacher functions contain only�elements “+1” and “-1”. Each of the�matrix columns presents one of the �Rademacher functions if each�black (white) cell is interpreted such�that it contains the number +1 (−1). �����������
	����� ��������    Here we show a transformation of the mosaic genomatrix [C U; A G](3) into the numeric matrix R8 in the result of such replacements of triplets with strong and weak roots by means of numbers “+1” and “-1” correspondingly. This numeric matrix R8 is called the “Rademacher form” of the genetic matrix of triplets  [C U; A G](3) or briefly the "Rademacher matrix” R8. �    ����
	����	��	Taking into account another phenomenological fact about a unique status of uracil U (which is replaced by thymine T in DNA), a simple U-algorithm exists, which transforms the matrix [C U; A G](3) into the matrix [C T; A G](3) with a new black-and-white mosaic (a triplet changes its color, if it has U in its odd position; this algorithm can be described below [Petoukhov, 2008]). This new mosaic corresponds to mosaic of one of Hadamard matrices H8. ������������
	����	���������������Hadamard matrices also contain only entries “+1” and “-1”. Columns of a Hadamard matrix form a complete orthogonal set of Walsh functions. If each black (white) cell of this symbolic matrix is interpreted as a container of number +1 (−1), then the Hadamard matrix H8 arises. Each of columns of the numeric matrix H8 presents one of the Walsh functions. ��������������������������
	����Hadamard matrices are intensively explored in digital signal processing including noise-immunity coding.� For example, codes based on Hadamard matrices have been used on spacecrafts «Mariner» and «Voyadger», which allowed obtaining high-quality photos of Mars, Jupiter, Saturn, Uranus and Neptune in spite of the distortion and weakening of the incoming signals.�      Hadamard matrices are used to create quantum computers, which are based on Hadamard gates. They are used in quantum mechanics in the form of unitary operators.�      Now we reveal and study the connection of the genetic code with a special kind of Hadamard matrices.�
	����	��   The main mathematical objects of the lecture will be these two (8*8)-matrices, which reflect phenomenological properties of the molecular-genetic ensembles: the Rademacher matrix R8 and the Hadamard matrix H8.�������	What secrets of the genetic code and living matter are hidden in these mosaic matrices? Let’s study these matrices using their “Rademacher decomposition” and “Walsh decomposition” correspondingly.�����
	����	������Each of matrices R8 and H8 is a sum of 8 sparse matrices, in which only one of columns is non-zero (all these columns coincide with Rademacher or Walsh functions):  R8=s0+s1+s2+s3+s4+s5+s6+s7;      H8=u0+u1+u2+u3+u4+u5+u6+u7 ������������������
	����	������In these decompositions of R8=s0+s1+s2+s3+s4+s5+s6+s7 and H8=u0+u1+u2+u3+u4+u5+u6+u7, every of 16 sparse matrices s0, …, s7, u0, …, u7 is a projection operator because it satisfies the criterion P2 = P. It means that genetic matrices R8 and H8 are sums of oblique projectors; the genetic system is connected with projectors.�   Now let us show how these “genetic” projectors allow modeling genetically inherited bio-ensembles.��
	����	��     INHERITED ENSEMBLES OF BIOLOGICAL CYCLES�Any living organism is a huge ensemble of inherited cyclic processes, which form a hierarchy at different levels. Even every protein is involved in a cycle of its "birth-death," because after a certain time it breaks down into its constituent amino acids and they are then collected into a new protein. According to chrono-medicine and bio-rhythmology, various diseases of living bodies are associated with disturbances (dys-synchronization) in these cooperative ensembles of biocycles. �	It is known that mathematical cyclic groups are useful to model natural cyclic processes. But combinations of the considered genetic projectors lead to a great number of cyclic groups.�����
	����	���For example, take sum of two projectors s0 and s2:����������Exponentiation (2-0.5*(s0+s2))N gives a cyclic group with its period 8: (2-0.5*(s0+s2))N = (2-0.5*(s0+s2))N+8 (here N=1, 2, 3, …). 	�   �    �	����
	Iterative actions of this operator Y = (2-0.5*(s0+s2)) on an arbitrary 8-dimensional vector X=[x0, x1, x2, x3, x4, x5, x6, x7] give a cyclic set of vectors, in which only two coordinates with appropriate indexes 0 and 2 are cyclic changed, all other coordinates are equal to 0:��������
	����	��	It means that this cyclic group of operators allows a selective control (or a selective coding) of cyclic changes of vectors in                 2-dimensional plane (x0, x2) of a 8-dimensional vector space. Other cyclic groups, which are based on exponentiation of pairs of the genetic projectors, possess the same property of a selective control of cyclic changes in                    corresponding 2-dimensional planes.���
	����	Exponentiation of sums of different pairs of these genetic projectors give three kinds of results, represented in the following symmetric tables by three colors.�����	�����	Green cells contain pairs of projectors, exponentiation of which give similar cyclic groups with the period 8. All these cyclic groups possess the property of a selective control of cyclic changes in        corresponding 2-dimensional planes inside an              8-dimensional vector space.���
	������������������	Red cells correspond to such sums of projectors, exponentiation of which shows their “doubling property” to model a dichotomous reproduction of genetic information in process of mitosis when biological cells are dichotomously reproduced: �(s0+s1)N = 2N-1*(s0+s1), …��Yellow cells correspond to such sums of projectors, exponentiation of which shows their “quadruplet property” to model a quadruplet reproduction of genetic information in meiosis when gamets are quadrupletly reproduced:  �((s0+s6)2)n = 4n-1*(s0+s6)2, … �����	�������
	����	��   Let’s return to sets of cyclic groups in green cells. The property of a simultaneously selective control of different subspaces of a multi-dimensional space by means of many cyclic groups is useful for modeling ensembles of cyclic processes in organisms including different animal gaits, etc. The simplest example is our model of human gaits, where cyclic movements of separate hands and foots can be defined independently. Fractional exponents for cyclic groups, for example (2-0.5*(s0+s2))N/K, allow getting any approximation to smooth (uninterrupted) movements.����   
	 Different gaits:
	������ But what one can do if big ensembles with thousands and more cyclic processes should be simulated?           �      A proposed decision is based on extensions of the Rademacher’s and Hadamard’s (8*8)-matrices R8 and H8 into (2N*2N)-matrices by the following expressions:�     R8  [1  1; 1  1](N) ,    H8  [1  -1; 1  1](N) , where  means Kronecker multiplication; (N) – Kronecker power, N = 1, 2, 3, …; [1  1; 1  1] and [1  -1; 1  1] – matrix representations of complex number and double number with unit coordinates. Each of these (2N*2N)-matrices are sums of 2N-projectors of the same “column type". Exponentiation of sums of different pairs of these new projectors gives as much cyclic groups as you want. These cyclic groups possess the same property of a selective control of 2-dimen-sional subspaces inside 2N-dimensional space. �����
	The revealed matrix approach gives new opportunities not only for studying inherited biological phenomena  but also for biotechnical applications including systems of artificial intellect and robotics. ����������
	����	�   �����������������	The problem of inherited ensembles of biological cycles is closely connected with a fundamental problem of biological time and biological watch. �	The author puts forward a “projectors conception”, which interprets living bodies as colonies of projection operators and multi-dimensional constructions on a basis of direct sums of vector sub-spaces.  Any organism is a whole entity, and it is naturally  to �think that not only visual perception�is based on projectors but that all �bioinformatics is connected with them.��������	�������������
	����	��  �����������     The evolution of living �organisms  is connected �with their absorption of �solar energy that�is projected on surfaces �of biological bodies by �means of solar rays. �Perhaps this fact can be �considered as one of �reasons of importance �of projection operators �in living bodies.���������������
	����	��                ABOUT DIRECTION OF ROTATIONS�	 In configurations and functions of biological objects frequently one direction of rotation is preferable (it concerns the famous problem of biological dissymmetry). Taking this into account, it is interesting what one can say about a  direction of rotation of vectors under influence of the cyclic groups of the considered operators? The following tables give the answer.�������������
	����	�����Here green cells correspond to cyclic groups on a basis of sums of pairs of projectors. The symbol  means counter-clockwise rotation, the symbol  means clockwise rotation. For example, the action [x0,x1,x2, x3,x4,x5,x6,x7]*(2-0.5*(s0+s2))N gives counter-clockwise rotations of vectors in (x0, x2)-plane.  �     Tables show dis-symetric sets of cases of both directions of rotation: 1) the left table contains only counter-clockwise rotation; 2) the right table contains the ratio of cases :=5:3. It generates some associations with a general problem of biological dis-symmetry.�
	����	�� �  ��                  ABOUT HAMILTON QUATERNIONS�  Till now we considered sums of pairs of the genetic projectors. Now let us consider sums of 4 projectors. Hadamard matrix H8 is sum of two sparse (8*8)-matrices H8 = HL8+HR8, each of which is sum of 4 projectors:������� Each of the matrices HL8 and HR8 can be decomposed into 4 sparse matrices, set of which is closed in relation to multiplication and defines a known table of multiplication of Hamilton quaternions:��������
	����	������������The multiplication table of Hamilton quaternions.
	�	It means that the (8*8)-matrix H8 is sum of two Hamilton quaternions with unit coordinates or, figuratively speaking, a “double quaternion”. This fact generates an association with a double helix of DNA.��������
	���������	Hamilton quaternions are closely� related to Pauli matrices, the �theory of the electromagnetic  field �(Maxwell wrote his equation on �the language of these quaternions),�the special theory of relativity, the theory of spins, quantum theory of chemical valences, etc. In the twentieth century thousands of works were devoted to quaternions in physics  [http://arxiv.org/abs/math-ph/0511092]. Now Hamilton quaternions are manifested in the genetic code system. Our scientific direction - "matrix genetics" - has led to the discovery of an important bridge among physics, biology and informatics for their mutual enrichment. ����	�о кватернионах Гамильтона в физике. В нас есть то, что математики с трудом находят потом.
	���������	������The connections of the genetic code with hypercomplex numbers seem to be interesting since classical theory of noise-immunity communication is based on multi-dimensional geometry: information sequences are represented as sequences of multi-dimensional vectors�V0, V1, V2, ….. �for the comparative �analysis of their metric �characteristics in �messages.���������������	�
	 � �THE 8 PROJECTORS AND HAMILTON BIQUATERNION�        The genetic (8*8)-matrix H8, which is �sum of the 8 projectors, can be �decomposed also in another way into a �set of new 8 sparse matrices:�H8 = H80+H81+H82+H83+H84+H85+H86+H87 =����	����     This set of 8 matrices is also closed in relation to multiplication and defines a known multiplication table of Hamilton biquaternions :�
	����	�����������The multiplication table of Hamilton biquaternions (or Hamilton quaternions over field of complex numbers)
	����	� �          ABOUT SPLIT-QUATERNIONS BY J.COCKLE�The Rademacher matrix R8 is also sum �of 2 sparse (8*8)-matrices R8 = RL8+RR8, �each of which is sum of 4 projectors:��           �                                                                                 J.Cockle�                            ����Each of the matrices RL8 and RR8 can be decomposed into 4 sparse matrices, set of which is closed in relation to multiplication and defines a known table of multiplication of split-quaternions by J.Cockle (1849 year, http://en.wikipedia.org/wiki/Split-quaternion).�����
	    � RL8 =RL80+RL81+RL82+RL83=                      RR8 =RR80+RR81+RR82+RR83=�������������	��   The multiplication table of split-quaternions by J.Cockle. �
	Split-quaternions by Cockle are also used in mathematics and physics, for example, in A.Poincare’s model of Lobachevskiy’s geometry�(http://en.wikipedia.org/wiki/Split-quaternion).��
	����	�The 8 projectors and Cockle’s bi-split-quaternions�� The genetic (8*8)-matrix R8, which is �sum of the 8 projectors, can be �decomposed also in another way into �a set of new 8 sparse matrices:�R8 = R80+R81+R82+R83+R84+R85+R86+R87 =��������This set of 8 matrices are also closed in relation to multiplication and defines a known multiplication table of Cockle’s biquaternions :�����
	����	����������The multiplication table of bisplit-quaternion by J.Cockle (or split-quaternions over field of complex numbers)
	����	Here we have received new examples of the effectiveness of mathematics: abstract mathematical structures, which have been derived by mathematicians at the tip of the pen 160 years ago, are embodied long ago in the information basis of living matter - the system of genetic coding. The mathematical structures, which are discovered by mathematicians in a result of painful reflections (like Hamilton, who has wasted 10 years of continuous thought to reveal his quaternions), are already represented in the genetic coding system.
	������������Let’s return to �(8*8)-matrix �representations� HL8 and HR8 of�Hamilton �quaternions with �unit coordinates. �     Exponentiation of each of these matrices (with a coefficient 0.5) leads to a cyclic group with its period 6  (n = 1, 2, 3, …): (0.5*HL8)n+6 =(0.5*HL8)n;   �(0.5*HR8)n+6 =(0.5*HR8)n.�A similar expression is true for �a classical (4*4)-matrix �representation of Hamilton �quaternion Q with unit �coordinates: (0.5*Q)n+6 =(0.5*Q)n ���������	��
	����One can dispose all 6 members of any �of these cyclic groups (for example, �members of the group of (4*4)-matrices�(0.5*Q)n+6 =(0.5*Q)n ) on a circle to show�a complete analogy of their set �to famous Newton’s color circle�of inborn properties of �human color perception.����	��
	��������	��The Newton’s color circle �shows the following:�1) each of 6 colors on the �circle is the sum of two �adjacent colors (the same is �true for these 6 quaternions �on the circle);�2) the three colors in vertices�of each of 2 triangles  of the “star of David” neutralize each other in their summation (the same is true for the quaternions in each of triangle of the “star of David”, whose sum is equal to 0). �3) complementary colors, which are opposite each other on this circle, neutralize each other in their summation (sum of any two diagonal quaternions on the circle is also equal to 0).�� �������
	��	Briefly speaking, the red, magenta, blue, cyan, green and yellow colors are formally expressed by means of the Hamilton quaternions Q1, Q2, Q3, Q4, Q5, Q6 correspondingly. The problem of mixing of colors can now be solved in terms of the cyclic group of Hamilton quaternions Qn.�   Using the mentioned (2n*2n)-matrix representations of Hamilton quaternions allows encoding (or controlling) different colors in different sub-spaces of an internal space of a living body.�
	Algebraic invariances and positional permutations in triplets�          The theory of signal processing pays a special attention to permutations of information elements. Six variants of permutations of positions inside a triplet exist: 1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2, 3-2-1.     �    Let us study transformations of the Rademacher and Hadamard representations of the genomatrix             [C T; A G](3) in all these cases of positional permutations in all triplets. A simultaneous permutation of positions in triplets transforms the most of the triplets in its matrix cells. For example, in the case of the transformation of the order of positions 1-2-3 into the order 2-3-1, the “white” triplet CAG with the weak root CA is transformed into the “black” triplet AGC with the strong root AG. In the result, the quite new mosaic genomatrices arises.
	������In the result of these positional �permutations in triplets,  five �additional Rademacher matrices �arise from the initial Rademacher �genomatrix R8; each of them is a �new matrix representation of the �same bi-spit-quaternion by �Cockle with unit coordinates.�   Also in the result of these �permutations, five new Hadamard�matrices come from the initial �Hadamard genomatrix H8; each of �them is a new representation of �the same Hamilton's �biquaternion with unit coordinates.���
	����������   Each of these 5 new Rademacher �matrices can be also decomposed �into 8 projectors with Rademacher �functions in their non-zero columns.��   Each of these 5 new Hadamard�matrices can be also decomposed �into 8 projectors with Walsh �functions in their non-zero columns.�   All ideology of projectors and �their combinations is conserved �for these new matrices, which �arise due to positional �permutations in triplets.�������
	��The invariance of matrix algebras with different permutations of elements in genomatrices is interesting, in particular, due to the metamorphosis of the organisms. For example, in  the metamorphosis of a butterfly, chrysalis does not eat at all and has a fixed atomic composition, but - by means �of genetically determined �permutations of elements – �chrysalis turns into a butterfly,�which is a quite different�organism with the same DNA.���
	��������It seems that the nature likes projectors. For example, electromagnetic vectors are represented as sums of their projections in a form of electric and magnetic vectors. ���  ������
	����	����                CYCLIC CHANGES AND THE “I-CHING”��  In the field of molecular genetics, Nobel prize winner F.Jacob, a famous Prof. G.Stent (1965) and some other authors already noted some parallelisms between the molecular genetic system and a symbolic system of the Ancient Chinese book “I-Ching” (“The Book of Changes”), which was written a few thousand years ago. �	 This book had a great influences on different aspects of life of people not only in China but also in many other countries.������
	The state flag of South Korea �with symbols of triplets from  �“I-Ching”�������
	����	����     �	Cyclic and other patterns, which arise in “matrix genetics”, have many new analogies with the system of “I-Ching”, Chinese circular calendars, the Zodiac system and patterns of Ancient Oriental medicine. In other words, here we get new materials for a problem �of “a connection of times”. ������
	����	������
	“I-Ching” deals with Yin-Yang symbols including the four basic digrams:  Old Yang (         ),   Old Yin  (         ), Young Yang (         ) and Young Yin (         ).�The famous table of 64 hexagrams in Fu-Xi’s order exists in this symbolic system: ��������
	��   The ancient Chinese claimed that the system of ”I-Ching" is a universal archetype of nature, a universal classification system. They knew nothing about the genetic code, but the genetic code is constructed in accordance with the         ”I-Ching". �
	     Briefly about ensembles of phyllotaxis patterns �	Let us briefly note that a study of sums of genetic projectors has given new possibilities of modeling some other inherited biological phenomena including a phenomenon of ensembles of phyllotaxis patterns inside one organism. �������
	����	��	It is known that an �organism can have many �phyllotaxis patterns in its �parts. Figure shows an �example of a spruce with many �phyllotaxis cones. Each of �these cones can be interpreted as a sub-space of a �multi-dimensional internal space of this tree. The proposed approach of genetic projectors and their sums allows modeling such ensemble of phyllotaxis patterns, each of which is realized in its own subspace with an individual velocity and a phase shift of development (see some details in the article [Petoukhov, 2013,  http://arxiv.org/abs/1307.7882 ]).���
	����	�����An example of modeling three phyllotaxis patterns, each of which belongs to its own 2-dimensional        sub-space of a general multi-dimensional internal space.
	�    ��������     ���     PROJECTORS AND THE EXCLUSION PRINCILE OF EVOLUTION OF DIALECTS OF THE GENETIC CODE�  Science knows 19 dialects of the genetic code http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi . Some of �them have another �black-and-white mosaic �in their matrix �presentation �[C U; A G](3) (another�system of triplets with�strong and weak roots).���������	�����
	�    ��������     �  ���Some of the dialects have another black-and-white mosaic in their matrix presentation [C U; A G](3) (another system of triplets with strong and weak roots).���������������������	�����
	�    ��������     �  ������������������������	�����
	�    ��������     �  ������������������������	�����
	�    ��������     �  ������������������������	�����
	�    ��������     �  ������������������������	�����
	�    ��������     �  �������������                                               ���                                         ��                                               The set of 19 dialects of the            �                                                 genetic code contains �                                                13 dialects  with a “typical   �                                                 mosaic” of their matrix   �                                                 representations and �                                                 6 dialects with non-typical                    �                                                  mosaics.��������������	�����
	�    ��������     �  �������������  The author notes the following non-trivial phenomenological fact: If each of black (white) triplets is replaced by +1(-1) in the matrices, every of these numeric matrices of the genetic dialects is sum of projector operators. One can name this fact as the “projection rule” of dialects of the genetic code.�        So the following exclusion principle is proposed: - nature forbids such dialects of the genetic code, in which the division of the set of 64 triplets into two subsets of triplets with strong and weak roots leads to a violation of "the projection rule".�     Discovering exclusive principles of nature is an important task of mathematical natural science (the exclusive principle by Pauli in quantum mechanics is one of examples).�                                         ��                                               ��������������	�����
	������        About the main role of informatics in living matter:� �   “Notions of “information” or “valuable information” are not utilized in physics of non-biological nature  because they are not needed there. On the contrary, in biology notions “information” and especially “valuable information” are main ones; understanding and description of phenomena in biological nature are impossible without these notions. A specificity of “living substance” lies in these notions” (Chernavskiy, 2000, “The problem of origin of life and thought from the viewpoint of the modern physics”,- “Progress of Physical Sciences”, 170(2), p.157-183 (“Uspehi Physicheskih Nauk”, in Russian)).  Prof. Chernavskiy is a head of Department of theoretical biophysics in Physical Institute of the Russian Academy of Sciences.�����
	�     The author has published four books about matrix genetics in Russia (2001, 2008) and in the USA (2010 and 2011 years) and many thematic articles (see his personal web site http://petoukhov.com/ ).���������
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	   ��      -�        Genetic Hadamard matrices �     Now we will show that properties of genetic alphabets bind the genetic system with a special sub-family of Hadamard matrices which are one of the most famous tools in technology of signal processing.�     Two of essential properties of the 4-letter alphabet of nitrogenous bases A, C, G, T are connected with unique status of thymine T: ��- 1)  each of three bases A, C, G �       has the important amino-group�       NH2, but the fourth base T �       has not it; �- 2) the letter T is a single base�       in DNA, which is replaced in �       RNA by another base U (uracil). � 
	-   Taking into account this unique status of the letter T, we have revealed the following “T-algorithm” (or “U-algorithm”), which can be used in computer of organisms and which transforms the Rademacher matrix R8 into a Hadamard matrix H8 :����
	-�   By definition the T-algorithm contains two steps:            - 1) each of triplets in the black-and-white (8*8)- �  genomatrix (for example, in the matrix [C T; A G](3))   �  changes its color into the opposite color each time  �  when the letter T stands in an odd position of �  the triplet (in the first or in the third position);          �- 2)  then black triplets and white triples are  �   interpreted as entries “+1” and “-1” correspondingly.��
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